If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-12x-13=0
a = 4; b = -12; c = -13;
Δ = b2-4ac
Δ = -122-4·4·(-13)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{22}}{2*4}=\frac{12-4\sqrt{22}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{22}}{2*4}=\frac{12+4\sqrt{22}}{8} $
| 3.2-1.6e=9.12 | | y=14,500(1.75)^15 | | -4.7=-2.9+u | | y=120(32)^30 | | 3+y=1.5 | | 7x/3=5/8 | | 16=7−–n | | e/2+22=38 | | 3x+32=17 | | 11+p/4=15 | | 5x=5.6 | | -8+7p=-14 | | 2x2+54=0 | | (10y+4)/5=0 | | y=2021(1.05)^25 | | 45b-9=126 | | 45b+9=126 | | 2(2z-4)=2 | | 2x3+54=0 | | -133=7(1+5n) | | a-8/5=-2 | | 2(5-2x)-7x=87 | | y=278(-1.12)^15 | | y=278(1.12)^15 | | 3x3-81=0 | | x2+4x=29 | | n÷5+0.25=5.75 | | (35)+(3x-20)=180 | | 6w+2(-4w-11)=13 | | 4+4(7-3b)=104 | | -e/10=5 | | 2.1g-0.22=9.46-2.8g+6g |